
What is a “Good” Ruleset? Comparing Rulesets Using
Equality Saturation
CYNTHIA RICHEY, University of Washington, USA

1 PROBLEM &MOTIVATION
Rewrite rules are critical in equality saturation, a technique with applications in compiler opti-
mization, formal verification, and program synthesis. However, the process of maintaining and
updating rulesets is difficult, in no small part because a valid ruleset is not necessarily a good
ruleset. If a ruleset is too small, then results will be suboptimal due to missing rules; on the other
hand, rules that are not useful, either because they are not used by the application or because
they are redundant, will cause equality saturation to hit its resource limits prematurely. Therefore,
it is important for a ruleset to contain a small, effective set of axioms. An intuitive method for
comparing rulesets is needed. We propose the use of the derivability heuristic, where a rule is
said to be derivable by a ruleset, 𝑅, if its left- and right-hand sides are determined to be equivalent
using 𝑅’s rules. Here, we expand the notion of derivability introduced in prior work, argue that it
should be defined in relation to the equality saturation application in which it is used, and evaluate
different definitions of derivability on a variety of domains.

2 BACKGROUND ON E-GRAPHS & EQUALITY SATURATION
The e-graph data structure represents an equivalence relation over terms [1, 3]. It is comprised
of a set of e-classes, which each contain a set of equivalent e-nodes. Each e-node is a function
𝑓 (𝑐1, 𝑐2, . . .) with children e-classes 𝑐𝑖 . An e-graph is said to represent a term 𝑡 if any of its e-classes
represent 𝑡 ; an e-class represents 𝑡 if any e-node in the class represents it. An e-node 𝑓 (𝑐1, . . . , 𝑐𝑛)
represents a term 𝑓 (𝑡1, . . . , 𝑡𝑛) if each 𝑐𝑖 represents 𝑡𝑖 .

A rewrite rule, 𝑙 ⇝ 𝑟 , states that a pattern 𝑙 can be rewritten as 𝑟 . Equality saturation [4, 5] is an
alternative to traditional term rewriting systems that uses an e-graph to apply rewrites: instead of
replacing subterms of a term 𝑡 , they are merged into the same e-class. Since it is non-destructive,
rewrites can be applied in any order until the e-graph saturates—that is, no new e-nodes are added
to the e-graph following rule application. In practice, however, saturation is rare: iteration or
node limits are usually necessary to constrain the e-graph. Figure 1 presents the core equality
saturation algorithm, as well as an example of applying a rule. Equality saturation can be used in
many applications, including optimization and equivalence-checking. In optimization, a term 𝑡

is transformed into an equivalent term 𝑡 ′, which is better according to some heuristic, whereas
equivalence-checking determines whether two given terms are semantically equivalent.

3 PRIORWORK
The derivability metric was originally introduced by Nandi et al. in Ruler[2], an equality saturation
tool for automatically synthesizing rewrite rules. Rule synthesis is a technique that uses automated
theorem proving to synthesize rewrite rules for a user-specified domain. A rule (𝑙 ⇝ 𝑟 ) is considered
derivable by a ruleset 𝑅 if running equality saturation using 𝑅 on an e-graph initialized with both 𝑙
and 𝑟 causes the two e-classes to merge. A ruleset’s deriving ratio with respect to another ruleset is
the proportion of that ruleset it can derive—so, if 𝑅1 has a deriving ratio of 1 with respect to 𝑅2, but
𝑅2 has a deriving ratio of 2 : 1 when deriving 𝑅1, 𝑅1 would be considered more “powerful”.
Derivability is used in two ways in the Ruler tool. First, rule synthesis generates a ruleset

containing many redundant rules (the “candidate ruleset”). A minimal subset of rules is found by
iteratively choosing rules from the candidate ruleset and eliminating candidates that are derivable

1

HTTPS://ORCID.ORG/1234-5678-9012


Richey, et al.

1 def equality_saturation(𝑡, 𝑅):

2 egraph = empty_egraph()

3 𝑐root = egraph.add(𝑡)

4 saturated = False

5 while (not saturated) and (not timeout()):

6 saturated = True

7 for ℓ ⇝ 𝑟 in 𝑅:

8 for (𝜎, 𝑐ℓ) in egraph.search(ℓ):

9 𝑐𝑟 = egraph.add(𝜎 (𝑟 ))
10 if not egraph.same_eclass(𝑐ℓ, 𝑐𝑟 ):

11 egraph.unions(𝑐ℓ, 𝑐𝑟 )

12 saturated = False

13 return egraph.extract_best(𝑐root)

x

*

2

x

*

2

<<

1

(× 𝑎 2) ⇝ (≪ 𝑎 1) 

Fig. 1. (Left) The core equality saturation algorithm, which takes a term 𝑡 and a ruleset 𝑅 and outputs a term
𝑡 ′ equivalent to 𝑡 [2, 4, 5]. (Right) Applying the rewrite (× 𝑎 2) ⇝ (≪ 𝑎 1). Dotted boxes represent e-classes;
solid boxes represent e-nodes. The lower e-graph shows that the e-classes for the terms (× 𝑎 2) and (≪ 𝑎 1)
have merged following the application of the rule. Examples are inspired by prior work [2, 5].

from these rules. Second, derivability is used to evaluate the quality of resulting rulesets—e.g.,
comparing a synthesized boolean ruleset to those from standard textbooks.

4 APPROACH & UNIQUENESS
Prior work narrowly defines a “quality” ruleset as a ruleset with more proving power. In practice,
users may want to tailor the definition of derivability to the needs of their equality saturation
application. We identify two potential applications: optimization, and equivalence checking. We
advocate for defining derivability differently depending on the application.
It is possible to implement different versions of derivability by making simple changes to the

initial context of the e-graph. We introduce a stricter definition—termed lhs—where, given a
ruleset 𝑅 and a rule 𝑙 ⇝ 𝑟 , the e-graph is seeded with only the left-hand side of the rule. If,
following equality saturation, 𝑟 is in the same e-class as 𝑙 , then the rule is considered derivable. We
propose this definition for use in the optimization application. In contrast, Ruler used a definition
of derivability—termed lhs-rhs—which we find is suited to equivalence-checking applications.

To illustrate the difference, consider the rule 𝑎⇝ 𝑏 and a ruleset containing the rule 𝑏 ⇝ 𝑎. In
an e-graph seeded with both 𝑎 and 𝑏, 𝑏 ⇝ 𝑎 will merge 𝑎 with 𝑏; however, when only 𝑎 is present
in the e-graph, the rule 𝑏 ⇝ 𝑎 will never run. In other words, under lhs derivability, 𝑎⇝ 𝑏 cannot
derive 𝑏 ⇝ 𝑎, whereas, under lhs-rhs derivability, it can.

Even in cases where a rule is theoretically derivable using both definitions, the lhs definition is
stricter. For example, given the rule 𝑥 ⇝ 𝑧 and the ruleset {𝑥 ⇝ 𝑦,𝑦 ⇝ 𝑧, 𝑧 ⇝ 𝑦}, the e-classes of
𝑥 and 𝑧 will eventually merge using either lhs or lhs-rhs. However, in the lhs case, it will take
an additional iteration of equality saturation. In general, given 𝑘 iterations, the lhs-rhs definition
requires that 𝑙 and 𝑟 merge within 2𝑘 rule applications, as opposed to 𝑘 in the lhs case. This is
because every term in the e-graph is a target for rewrites at each iteration, so more terms enable
longer chains of transformations.
Prior work assumes that the goal of derivability is to establish that there exists some chain

of rewrites in 𝑅 that can merge 𝑙 and 𝑟 , but this may not always be the case. When optimizing
expressions, direct rules may be preferred to indirect ones. Say we have the rule 𝑟 : 𝑎⇝ 𝑐 and the
rulesets 𝑅1 : {𝑎⇝ 𝑐} and 𝑅2 : {𝑎⇝ 𝑏, 𝑐 ⇝ 𝑏}. Under lhs-rhs, both rulesets derive 𝑟 in the same

2



What is a “Good” Ruleset? Comparing Rulesets Using Equality Saturation

number of iterations—but using lhs, only 𝑅1 can derive 𝑟 . In the equivalence-checking scenario, the
“better” ruleset is the one that gives us more information (in this case, the involvement of 𝑏); in the
optimization application, we prefer the ruleset that proves the rule directly.
We also observe that prior work in rule synthesis[2] uses not one but two distinct versions of

derivability. When rulesets are compared for evaluation purposes, the lhs-rhs approach is used;
however, during rule minimization (a heuristic used to scale synthesis), the approach is different.
After synthesizing a set of valid rules 𝐶 , which may contain significant redundancy, Ruler uses
a heuristic to select a subset of rules, 𝑆 , from this candidate set. All the terms in the candidate
set—that is, the left- and right-hand sides of all the rules—are added to an e-graph, and equality
saturation is run using 𝑆 . Following this process, 𝐶 is pruned to contain only rules that have not
merged following equality saturation using 𝑆—that is, it now contains the rules that 𝑆 cannot
derive! Significantly looser than even lhs-rhs, this definition enables many merges to occur at
each iteration of equality saturation, which is useful when working with large e-graphs.

5 RESULTS & CONTRIBUTION

Domain New→ Old (lhs, lhs-rhs) Old→ New
bool 100%, 100% 87.5%, 96.9%
bv4 100%, 100% 38.3%, 41.1%
bv32 100%, 100% 58.3%, 60.0%

rational 97.3%, 100% 52.0%, 58.5%

Fig. 2. Results of using both the lhs and lhs-rhs deriv-
ability metrics to compare rulesets in various domains
from the state-of-the-art rule synthesis tool, Ruler [2].
“New” refers to the ruleset obtained from the main
branch Ruler and “Old” refers to the ruleset obtained
from the originally published version of Ruler.

We performed two experiments to compare
the different variants of derivability and un-
derstand how the different variants interact
with equality saturation resource limits, such
as iterations and nodes. For the first experi-
ment, we evaluated both derivability metrics,
lhs and lhs-rhs, on increasingly complex do-
mains from Ruler[2]: booleans, bitvectors, and
rational numbers. We took the synthesized rule-
sets from both the main branch 1 of the most
recently-updated version of Ruler (“new” rule-
sets), and the originally-published version (“old”
rulesets) 2. We used the new rulesets to derive
the old rulesets, and vice versa, using both derivability metrics. As expected, lhs consistently
reported a more conservative result than lhs-rhs, although the differential varied by domain. Full
results can be seen in Figure 2.

For the second experiment, we altered Ruler’s minimization algorithm to use the lhs-rhs version
of derivability and compared against Ruler’s original algorithm, keeping resource limits the same
for both. We used one small domain (boolean) and one large domain (rational). For booleans,
the altered version of Ruler found exactly the same rules as the original version; on the rational
domain, it timed out before finding any rules, whereas the original algorithm found 131 rules. This
suggests that different definitions of derivability suit different contexts and have different resource
requirements—here, the original, looser definition of derivability scaled better on larger domains.
In summary, the notion of derivability is a valuable heuristic for evaluating ruleset quality in

equality saturation applications. We argue that derivability is best viewed as a suite of approaches.
We explore and characterize the definition of derivability, and identify three algorithms for com-
puting derivability. We presented concrete use-cases and applications for each from prior work
and present comparative results. We continue to work in this direction, further evaluating how
these variants of derivability interact with resource bounds commonly used in equality saturation
applications.

1https://github.com/uwplse/ruler
2https://github.com/uwplse/ruler/tree/oopsla21-aec

3



Richey, et al.

REFERENCES
[1] Dexter Kozen. 1977. Complexity of Finitely Presented Algebras. In Proceedings of the Ninth Annual ACM Symposium on

Theory of Computing (Boulder, Colorado, USA) (STOC ’77). Association for Computing Machinery, New York, NY, USA,
164–177. https://doi.org/10.1145/800105.803406

[2] Chandrakana Nandi, Max Willsey, Amy Zhu, Yisu Remy Wang, Brett Saiki, Adam Anderson, Adriana Schulz, Dan
Grossman, and Zachary Tatlock. 2021. Rewrite Rule Inference Using Equality Saturation. Proc. ACM Program. Lang. 5,
OOPSLA, Article 119 (oct 2021), 28 pages. https://doi.org/10.1145/3485496

[3] Charles Gregory Nelson. 1980. Techniques for Program Verification. Ph. D. Dissertation. Stanford University, Stanford,
CA, USA. AAI8011683.

[4] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009. Equality Saturation: A NewApproach to Optimization.
In Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Savannah,
GA, USA) (POPL ’09). ACM, New York, NY, USA, 264–276. https://doi.org/10.1145/1480881.1480915

[5] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha. 2021. egg:
Fast and Extensible Equality Saturation. Proceedings of the ACM on Programming Languages POPL.

4

https://doi.org/10.1145/800105.803406
https://doi.org/10.1145/3485496
https://doi.org/10.1145/1480881.1480915

	1 Problem & Motivation
	2 Background on E-graphs & Equality Saturation
	3 Prior Work
	4 Approach & Uniqueness
	5 Results & Contribution
	References

